
UNCLASSIFIED
9 SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered), V

REPOT DOUMENATIO PAG BEREAD INSTRUCTIONS

REPRTDOCMETATONPAG BFORE COMPLETING FORM o
1. REPORT NUMBER 2. GOVT ACCESSION No. 3. REI 4 CYLONMr

1. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

C~jC(LEA70 Z5TAUD-ALOOE 15MALLTALK MS THESIS

1-1 _ (AIows~ 6. PERFOR ING O%1G. REPORT NUMBER

AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(s)

*PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: uL.\)Et5ri-y oi ILLI1OI.5

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NUMBER OF PAGES

25
14. MONITORING AGENCY NAME & ADDRESS(iI different from Controlling Office) 15. SECURITY CLASS. (of lhis report)

AFIT/NR
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

15s. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE

17. 'DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

SAME AS REPORT

IS. SUPPLEMENTARY NOTES Approved for Public eleas e:,IAW AFR 190-1
LYNN E. WOLAVER f .~a
Dean for Researc: dProfessoa Development
Air Force InstituMV. of Technoloy
Wright-Patterson AFB OH 45433 6%8

19. KEY WORDS (Continue on reverse aide if necessary end Identify by block number)

AG1 919880

DD I JA 7 1473 EDITION OF I1NOV 65 IS OBSOLETE IJNCLIISS1IE4
SECURITY CLASSIFICATION OF THIS PAGE ("oen Data Entered)

8 8 8 '11

Creating Stand-Alone Smalltalk
Applications

Paul D. Gilbert

June 15, 1988

Abstract

Snialltalk-80 is a large programming environment. Developing an
application program in Smalltalk involves re-using or modifying parts of
the environment and adding more SnmalItalk code to the environment.
An application is thus dependent on the environment; the entire envi-
ronment is present when executing an application program even though
the application might rely on only a small portion of the environment.
This paper describes the process of separating an application from the
Smalltalk environment so that the application can be executed as a

stand-alone program unit. It also describes the Smalltalk system tracer,
an essential tool for application tracing, and image inspector, a tool for
exanining a Smalltalk image that is saved on disk. ,,.

/ I pA.

1 Introduction

The Smalltalk-80 programming environment offers many advantages. The envi-
ronment includes a sophisticated debugger, a text editor, a compiler to trans-
late Smalltalk code into interpretable code, and a number of other utilities.
Access to these programs is provided through a graphical user-interface based
on over-lapping windows. Each window represents a task, only one of which
is active at any time. The user selects the active window using a mo,,se.
This user interface provides a highly integrated environment which allows a
programmer to quickly switch between programming, compiling, testing and
debugging activities.

All of the code to implement ihe Smalltalk environment is accessible to the
user. Smalltalk code is organized into classes. Classes include methods, the
Smailtalk equivalent of functions. A program called the browser presents the
classes and their methods grouped by category for easy access. Developing a
Smalltalk application involves re-using or modifying existing classes as well as
adding new classes. An application is therefore dependent on the environment
and difficult to distinguish from the environment.

This integrated environment is an advantage when developing an applica-
tion but becomes a disadvantage when delivering a finished software product.
One problem is size. The entire Smalltalk environment (which is over 1 MByte)
and the Smalltalk interpreter must be present to execute an application. This
restricts the number of machines on which a Smalitalk application can run.
Another problem is that users of a Smalltalk application have too much access
to the underlying system. This presents a reliability and security problem.

To create smaller applications, we need some way to identify the parts of the
environment that are actually needed for an application and strip the rest of the
environment away. I'll refer to this process as application tracing, named after
the system tracing capability provided in most Smalltalk implementations. The
next section of this paper presents an overview of application tracing. Section
3 presents a more detailed discussion of the Tektronix system tracer. Section
4 discusses the program I wrote to do application tracing. Section 5 discusses
image inspector, a tool I developed for debugging the application tracer.

2 Overview of Application Tracing

A Smalltalk environment, also called an image. is made up entirely of objects.
For example. there are objects to represent classes, methods, and variables.
Saving a Smalltalk environment requires that all of the accessible objects be-.---.......
written to secondary storage. The format of the image is implementation
dependent.

• "%

One way to copy objects of an environment to secondary storage is by
executing the system tracer (sometimes called the system cloner). The system
tracer creates a new image from the image that is currently executing by writing
a copy of every accessible object to an image file. The new image can be the
same as the image in memory or it can be a transformation of the image in
memory.

The system tracer thus provides an obvious vehicle for implementing appli-
cation tracing. The idea is to transform the image in memory by eliminating
objects that are not needed for some application. The system tracer can then
be used to copy the image to secondary storage.

The question then is, how do we perform such a transformation? The
Tektronix implementation of system tracer provides two capabilities for trans-
forming an image. One capability is to create an image that excludes some
user-specified set of classes. Excluding a class also elimirates the methods im-
plemented in the class and all instances of the class. This capability might
be useful when re-implementing a class. After testing a new implementation,
a user could create a new image that excludes the old implementation of the
class. The capability to exclude classes, however, was not intended and is not
effective for application tracing. An application developer doesn't know what
classes will be needed. He may know, for example, that the application uses
class C but not know which classes are referenced directly or indirectly by class
C. In addition, a finer granularity is needed; we need the capability to delete
methods and other individual objects.

Another option for creating a transformed image is a process called win-
nowing. The purpose of winnowing is to remove unreferenced methods (i.e.
those for which there is no sender). During the winnowing process, the system
tracer makes a pass through each class in the Smalltalk environment, elimi-
nating methods whose selectors are not sent by any other method. Then it
makes another pass, picking up those methods that are now unreferenced due
to the preceding deletions. The process continues for the number of passes
specified by the user. Winnowing is essentially an implementation of the graph
algorithm known as a topological sort.

At first glance, winnowing might seem a good way to eliminate methods that
are not needed for some application. Winnowing, however, does not eliminate
methods that are invoked in cycles. For example. if method ml references
method m2 and m2 references ml. neither method will be deleted even though
they may not be needed for some application.

A better way to implement application tracing is to identify methods that
are referenced rather than searching for methods that are unreferenced. ('on-
ceptually this is a graph problem. Imagine a graph in which each node repro-
sents a method in the Smalltalk environment. Suppose we connect the nodes

3

by adding a directed arc from a node ml to a node m2 if and only if method
ml invokes method m2. If we constructed such a graph, identifying the meth-
ods needed by an application would be simple. We could traverse the graph
beginning with the "'initial method" (i.e. the first method to be invoked when
the image is executed). The initial method is analogous to the main program
in a block-structured language like C or Pascal; it specifies the complete appli-

cation at a high level. The only methods needed for our application would be
those reached by a traversal from the initial method.

Unfortunately, we cannot construct such a graph. Smalltalk methods do not
directly invoke other methods; instead they send messages. The actual method
that will respond to a message is not determined until run time. There may be
many methods that respond to a given message. The graph concept, however.
can still be applied. Each node still represents a method. We just need more
arcs. If a method ml sends message m, we need an arc from node ml to every
node that implements message in. After constructing such a graph, we can still
identify all of the methods needed for an application by performing a graph
traversal that begins with the initial method.

In practice, however, saving every implementation of every reachable mes-
sage doesn't work much better than winnowing; many unnecessary messages
are preserved. For example, I traced an application that did nothing but write
some text on the screen and then quit. The resulting image was about 900K
bytes and included about 25K objects. Only about 10% of the Smalltalk envi-
ronment was eliminated in generating this application.

One reason this happens is that Smalltalk uses "standard protocols" i.e. the
same message names are used to implement similar functions in many classes.
For example, most classes implement the printOn: message, which prints a
textual representation of an object. Any reasonable application makes use of
standard protocols and hence could potentially invoke most of the methods in
the Smalltalk environment.

Limiting the size of an image requires that we limit the number of con-
nections in our graph. Rather than including every implementation of some
message, we need a way to identify the implementations that are really needed.

The type system, developed by Professor Johnson and Justin Graver, provides
this capability JG87. For each message send, we can examine the type of the
receiver, identify the classes included in this type, and then include only the
message implementations in those classes. Using this approach, I generated an
application that does simple arithmetic. The resulting image was about 48K
bytes and included 1.640 objects.

4I

r --

OFFSET SIZE DESCRIPTION

0 4 size of image in bytes (excluding image header)

4 4 number of objects (according to program
comments, but seems to be unused)

8 2 a code to identify the machine and processor
for which the image was written

10 2 number of known objects

12 8 offset and size of gradefile # 1

20 8 offset and size of gradefile # 2

28 8 offset and size of gradefile # 3

36 8 offset and size of gradefile # 4
44 8 offset and size of gradefile # 5

52 8 offset and size of gradefile # 6
60 8 offset and size of gradefile # 7

68 8 offset and size of gradefile # 8

76 8 offset and size of large objects file
84 4 number of large objects in file

88 88 table of known objects

176 336 seems to be unused

Table 1: Format of a Tektronix Image Header

3 System Tracer

The system tracer writes an image to secondary storage by copying objects
from the image in memory. The Tektronix version is implemented by a class
called SystemTracer. An image on disk begins with a 512-byte image header
formatted as shown in table 1. The offsets and field sizes are a decimal number

of bytes.

The table starting at file position 88 consists of an object-oriented pointer
(OOP) to each "known object". An OOP is a 32-bit value that specifies the
position of an object within the image file. "Known objects" (also referred to
as "special objects") are those which the Smalltalk interpreter must be able to

access in order to execute Smalltalk code. For example. one special object is
the class SmallInteger. Given an object, the interpreter must be able to access

the object's class. Objects other than small integers contain a class OOP. Since
instances of Smalllnteger do not contain a class OOP. the Smalltalk interpreter
uses the known object table to access the class.

Following the 512-byte header are the objects. Each object begins on a

0%

M!;-N

Oop of object's class CTX - I If this is a cntex object

Roserved ,PTI RMT -1 If this object has a remote
for garbago un type Hash Value kndexable pat

lloctor uRegion rnd age Type - 0 normal (non-indexable)

info for garbage Number of Size (in bytes) of object 1 byte indexable
collector fixed fields 2 word (16-bit) indexable3 bng (32-bit) indexabls

31 16 04 pointer indxable

Figure 1: Format of a Tektronix Object Header

(4-byte) word boundary and contains a 12-byte header organized as shown in
figure 1[CW861. This diagram reads from bottom to top. The first byte is data
used by the generation scavenging scheme for garbage collection. See [UngS4.
for a presentation of this algorithm. The second byte specifies the number of
named instance variables. The next 16-bit field gives the size of the object in
bytes. Then, following another byte that is used for garbage collection, is a
flags byte. Next comes a 16-bit hash word and then the OOP of the object's
class.

The object's header is followed by other fields of the object. Interpretation
of these fields depends on the flags field. For example, an object with five
instance variables and no indexable part would contain five 32-bit fields, one
for each instance variable. Each 32-bit field would be either a Smallinteger
value or an OOP. A SmallInteger is distinguished from an OOP by the high-
order bit, which is 0 for a Smallinteger and t for an OOP.

As mentioned in the overview, the system tracer can be used to create a
new image equivalent to the image in memory or it can create a transformation
of the image in memory.

To create an image without transformation, evaluate the expression

SystemTracer writeClone.

This method will prompt and read a file name and then write the image to a
file with the name input.

To create an image that excludes some set of classes, evaluate anl expression-•
of the form

SystemTracer writeCloneWithout: aSetOfClasses.

This method "clamps" out each class in aSetOfClasses. Clamping a class in- I
volves the following:

6 pT6
*.%

_4!

1. The class reference is removed from the system dictionary, Smalltalk.

2. The class is removed from its parent's list of subclasses.

3. The class is removed from the SystemOrganization global variable which
identifies the classes in each class category. If a class category becomes
empty, the category is removed from SystemOrganization.

Instances of a clamped class are not written to the new image. If an object
that contains references to a clamped class is written to the new image, these
references are changed to the OOP of the nil object.

To create an image using the winnowing process, send a message of the
form

winnow: numberOfPasses

to an instance of SystemTracer. This message will make the specified number
of passes through the system clamping out unreferenced methods. When win-
nowing completes, you must send the writeClone message to copy the image to
disk.

3.1 Implementation of SystemTracer

As stated earlier, the Smalltalk environment consists entirely of objects. Every
object references at least one other object. We can conceptualize an image as
a directed graph where each node represents an object and each edge repre-
sents an object reference (i.e. an OOP). SystemTracer uses a graph traversal
algorithm to identify the accessible objects. The traversal is implemented as a
sequence of depth-first searches beginning with certain root objects. The root
objects consist of the special objects, the symbols #Smalltalk and #Processor.
and the global variable Smalltalk.

To create a new image, SystemTracer writes an image header and writes the
objects visited during a depth-first traversal from the root objects. Any object
which is not reachable from one of the root objects is not written to the image
file.

A depth-first search of the object space is initiated by sending the message

trace: anObject

to an instance of SysternTracer. To understand what happens when trace: is
invoked, let's consider an example. Suppose we are tracing a non-indexable
object called A which has one instance variable called B. Object B is a non-
indexable object with instance variable C. Object C is a string. The following
graph represents this example.

f

aa

a

A class B class C class
T T T
A - B - C

Objects are written to the new image file in the order that they are traced.
When object A is traced, the first 8 bytes of the object header are added to the
end of the image file being created. Next, the OOP that references A's class
and the OOP that references object B must be written. OOPs in memory.
however, do not correspond to OOPs in the new image. An OOP is calculated
from its object's position in the file, but this position is not known until the
object is traced. Therefore, after space is reserved for the remainder of object
A, a trace is invoked on A's class and then on object B. Once these traces are
complete, the OOPs for A's class and for object B are known. The image file is
then re-positioned to 8 bytes after the start of object A. Then A's class OOP
and the OOP for B are written.

Of course the trace of B will cause a trace on B's class and on object C.
The trace of C will cause a trace on C's class. Therefore, the trace of object
A cannot be completed until objects A class, B class, C class, B, and C have
been traced. This example illustrates the necessity of a depth-first traversal to
trace an image.

Ditterent classes of objects have different forinatb ror non-header data. We
saw that for A, which was a non-indexable object, the non-header data was an
oop for its instance variable. In contrast, C (of class String) is a byte-indexable
object. C's non-header data therefore contains the bytes of its string value.

SystemTracer uses different methods to write the different object formats.
To determine which method to invoke, the trace: method usc Rn instance
variable called writeDict. writeDict is a dictionary that associates each class
with the appropriate message selector for writing objects of that class. The
trace: method sends the perform:with: message to invoke the correct writing
method.

The writing method selectors are #writeContext:, #writePointers:, #writeln-
dexablePointers:, #writeBytes:, #writeChars:, #writeWords:. 4writeSet:, -4writel-
dentityDictionary:, #writeMethodDictionary:, and #writeProcess:. Each method
selected by these symbols sends a message of the form

new: obj
class: class
length: length
flags: flags
grade: grade
trace: traceBlock

a

write: writeBlock

to an instance of SystemTracer. This method, abbreviated as new... write in this
paper, is executed for every object written to the image file. The new... write
method writes the header data in the same format for all objects, but the non-
header data varies. This variation is accounted for by the parameters traceBlock
and writeBlock. The traceBlock contains code to trace objects referenced in the
non-header data. The writeBlock contains code to write the non-header data.

The new... write method first writes the object header. Next, if the trace-
Block is non-nil, the object's class is traced. Next the traceBlock is evaluated
to trace other referenced objects. Once the object's class OOP and other ref-
erenced objects have been traced. their OOPs are known. The object's class
OOP can then be written. Finally, the writeBlock is evaluated to write the
non-header data.

A depth-first traversal algorithm generally requires some way of determining
whether or not a node has already been visited. Otherwise, nodes would be
visited multiple times. When tracing an image, multiple visits would mean
multiple copies of the same object on an image file, which clearly would be a
problem. Even worse, the traversal of a cyclic graph (like the Smalltalk object
space) would not terminate.

To avoid these problems, SystemTracer uses an instance variable called
hashTable to mark objects as "visited". The hash value associated with ob-
jects in the hash table is a "partial OOP", which can be easily transformed
into an OOP. (The method SystemTracer writeOopOf:on: performs this trans-
formation.) When trace: anObject is invoked, it checks the hash table. If
anObject is already in the hash table, the trace terminates. If anObject is not
in the hash table, the object is traced 'i.e. the appropriate write message from
writeDict is sent) and the object is placed in the hash table.

When trace: is called on an object of class SmallInteger, the trace: method
simply returns. Smallinteger instanceb are not traced because they are not
stored as separate objects. Instead, small integer values are simply written
into an object in place of an OOP.

The hash table also plays a role in the clamping process. When an object
is clamped, the object is placed into the hash table with a hash value equal
to Clamped (a class variable with value -2). This serves two purposes. First.
since a clamped object is put in the hash table it will not be traced. Recall that
the traversal algorithm assumes that any object in the hash table has already
been traced. Second, when an OOP is computed from the hash value -2. the
result is a reference to the object nil. Consequently. all references to clamped
objects are converted to nil.

The writeDict instance variable plays a role in the clamping of classes. When
a class is clamped, its associated write selector is set to :writeClamped:. The

i)

writeClamped: method does nothing. This makes it possible to eliminate all the
instances of a clamped class without having to explicitly clamp each instance.
Consider what happens when some object obj, which is an instance of a clamped
class, is traced. Assuming obj is not in the hash table, the writeClamped:
method is invoked. writeClamped: does not trace obj and therefore does not
place obj into the hash table. When the OOP for obj is written, the hash table
is again consulted. The partial OOP returned for obj will be NoRefs (a class
variable with value 0). The OOP computed from the hash value 0 will reference
the object nil. Consequently, instances of a clamped class are not written to
the image and references to them are converted to nil.

A possible source of confusion should be mentioned at this point. Fhe hash
word written in each object header is not related to the hash value stored in
hashTable. The hash word in the object header for a given object is usually
constant from one image to the next. In contrast, the hash value in hashTable
for a given object varies between images. Recall that the hash value is a partial
OOP. As such, the hash value depends on the object's location within the image
file.

3.2 Sequence of Tracing

Writing a disk image begins when the message

writelmage: roots

is sent to an instance of SystemTracer. This method controls the process of
writing a disk image by performing the following sequence of tasks:

1. Reserves space in the image file for the image header.

2. Calls writeSpeciall to begin tracing the special objects.

3. Calls the method trace: to initiate a depth-first search of the object space
beginning with each element of roots (an array argument). roots contains
only one element, the Smalltalk system dictionary.

4. Calls writeSpecial2 to complete tracing the special objects.

5. Writes the image header.

6. ('loses the image file.

writeSpeciall performs the following sequence of tasks:

It)

tli, rx "TNIM W IN,. . , .- , . . . , ,

1. Calls new... write to write each of the special objects to the image. These
calls pass a nil traceBlock parameter and an empty writeBlock parameter
to the new... write method. At this point, therefore, objects referenced by
the special objects do not get traced. The class OOPs and the non-header
data for the special objects do not get written.

2. Initiates a depth-first search (by sending the trace: message) beginning
with the symbol #Smalltalk.

3. Initiates a depth-first search beginning with the symbol #Processor.

writeSpecial2 performs the following sequence of tasks:

1. Traces the class and objects referenced by the special objects. This is
necessary because tracing was suppressed by writeSpeciall (i.e. nil trace-
Block was passed to new... write).

2. Deletes unreferenced symbols from the symbol table. Unreferenced sym-
bols are those that were not reached during traversal of the object space.

3. Traces the symbol table.

4. Writes the class OOP and the non-header data for each special object.
This is necessary because writing was suppressed by writeSpeciall (i.e.
empty writeBlock was passed to new... write).

5. Writes the OOP for each special object in the known OOP table of the
image header.

4 Application Tracer

The application tracer is used to create an image containing only the classes
and methods needed to execute some application. To create an image file called
imageName for some application, evaluate an expression of the form

ApplicationTracer writeApplication: aMethodName "a symbol"
in: aClassName 'a symbol"

onFile: imageName "a string".

Together. the parameters aMethodName and aClassName identify the initial
method. The image written will contain all the classes and methods that might
potentially be invoked by the chain of execution started with the initial method.

ApplicationTracer creates a "'preserve dictionary" of all the classes and meth-
ods needed for a particular application. First, the classes of the special objects

1 V V

are preserved. Recall that special objects are those objects referenced by the
Smalltalk interpreter while executing an image. Next, classes that are needed
in any image are preserved. These include Class, MetaClass, CompiledMethod.
ByteCodeArray, LiteralArray, Method Dictionary, Process, and ProcessorScheduler.
These classes seem to be needed in order for the Smalltalk interpreter to begin
running and access the first method to be executed. Each time a class is added
to the preserve dictionary all of its superclasses are also added.

Next, the application tracer computes the methods that will potentially be
invoked when the initial method is executed (i.e. the method named aMethod-
Name in the class named aClassName). As discussed in the overview, the meth-
ods needed are determined using a graph traversal. Each method visited during
the traversal is added to the preserveDictionary. I wrote one version of graph
traversal for standard Smalltalk and one version for typed Smalltalk.

When the graph traversal completes, preserveDictionary contains only the
methods and classes needed for the application being traced. The next step is
to clamp all of the classes and methods that are not in preserveDictionary. Next.
global variables that are not needed are clamped. Finally, the SystemTracer is
invoked to write an image.

4.1 Implementation of Graph Traversal
The untyped and typed versions of the graph traversal algorithm differ in the
way they determine the methods needed for an application. In the untyped
version, every method that could respond to each message sent must be visited.
In the typed version, the number of methods that must be visited is limited
by the type of the message receiver. The type identifies a set of classes; only
methods in these classes need be visited. In both versions, a message of the
form

methodsNeeded By: aSelector in: aClass

is sent to an instance of ApplicationTracer. This method updates the preserve-
Dictionary by adding the classes and methods that are reachable from the initial
method. The parameters aSelector and aClass identify the initial method.

Figure 2 shows the most important methods used in the untyped version of
graph traversal. The object hasBeenReached is used to store the message selec-
tors that have been added to the preserve dictionary. The object selectorSet is
initialized with the set of messages sent by the initial method. The recursive
method reachableFrom:with: determines the methods that can be reached by
sending the messages in selectorSet. Each time another reachable method is
found, reachableFrom:with: calls itself with a new selectorSet. The pseudocode
in figure 3 may be helpful for understanding the reachableFrom:with: method.

~ ~ _, .~4S~J.A PY12

methodsNeededBy: aSelector in: aClass

I hasBeenReached selectorSet
hasBeenReached <- Set new.
selectorSet <- (aClass compiledMethodAt: aSelector) messages.

self reachableFrom: selectorSet with: hasBeenReached

reachableFrom: selectorSet with: hasBeenReached

I messageSet I
selectorSet do: [:aSelectorI

(hasBeenfteached includes: aSelector)

ifFalse:

[hasBeenReached add: aSelector.

(Smalltalk allClasseslmplementing: aSelector) do:

[:aClass I
self preserveClass: aClass withSelector: aSelector.

messageSet <-

(aClass compiledMethodAt: aSelector) messages.

self reachableFrom: messageSet with: hasBeenReachedl]]

Figure 2: Untyped Version of Graph Traversal

for each selector s in selectorSet:

if s has not yet been reached then
put s into hasBeenReached

for each class c that implements s:

preserve c with s

determine what is reachable from method s in class c

Figure 3: Pseudocode for reachable Frorn: with: mnethod

13

methodsNeededBy: aSelector in: aClass

I parseTree aMethod I
aMethod <- aClass compiledMethodAt: aSelector. '

aMethod class = CompiledMethod

ifTrue: [self halt: aSelector ,'in ',aClass name ,'is an

untyped method']

ifFalse:

[parseTree <- (aClass compiledMethodAt: aSelector) parseTree.
parseTree postorderDo: [:node I

self reachableBy: node using: parseTree encoder]]

reachableBy: aParseNode using: anEncoder

I receiverClasses definingClass key I
receiverClasses <- aParseNode receiverClasses: anEncoder.
"receiverClasses is the set of classes to which the message

represented by aParseNode may be sent."1

receiverCiasses do:

[:class I
definingClass <-

class whichClassDefinesSelector: aParseNode selector.

(self hasBeenReached: aParseNode selector in: definingClass)

ifFalse:

[self preserveMethod: aParseNode selector

in: definingClass.
self methodsNeededBy: aParseNode selector

in: definingClass]] I

Figure 4: Typed Version of Graph Traversal

14

Figure 4 shows definitions used in the typed version of graph traversal.
The method methodsNeededBy:in: first checks to see if the method identified
by aSelector in aClass is a typed method. If not, an error is generated. It is
possible to proceed from this error. The result is that any messages sent by the
untyped method will be ignored (i.e. methods invoked by untyped methods
will not necessarily be preserved). For typed methods, a postorder traversal of
the parse tree is performed. The block passed to postorderDo: is evaluated for
each node on the parse tree. Consequently, the method reachableBy:using: is
invoked for each node.

The nodes on the parse tree will be instances of some subclass of Type-
dParseNode. See [Loy881 for an explanation of parse nodes. Some of these
nodes represent message sends and hence invoke methods. The idea is to find
these methods that may be invoked and call the methodsNeededBy:in: for each
one. Nodes that invoke methods will be of class TypedMessageNode or class
Typed ProcedureNode. A Typed MessageNode or Typed Procedure Node responds
to the receiverClasses: message with the set of classes of the possible message
receivers. For each of the possible receiver classes, the method in the class
hierarchy that actually implements the message is found. If this method has
not previously been reached, it is preserved and a call is made to methodsNeed-
edBy:in: to determine what additional methods may be invoked by the method
just preserved.

When the receiverClasses: message is sent to an instance of some subclass
of TypedParseNode other than TypedMessageNode or Typed ProcedureNode, an
empty set is returned. This is accomplished by defining a default implemen-
tation (TSet new) for the method receiverClasses: in class TypedParseNode and
overriding this implementation in the classes Typed MessageNode and TypedPro-
cedureNode. Consequently, for those parse nodes that do not represent message
sends, methodsNeededBy:in: is not invoked.

4.2 Changes to SystemTracer

I changed SystemTracer for the following reasons:

1. To (attempt to) correct (real or imagined) errors in the code.

2. To add debugging or error checking code.

3. To decrease the size of the image created for an application.

4. To add comments.

ApplicationTracer is a subclass of SystemTracer. I made changes to System-
Tracer methods by overriding them in ApplicationTracer rather than directly

hKr N JV2Tp rbr _.K ' I- ~T~J -A 10. __ - J. _ - -,A' r

modifying them in SystemTracer. Some of the more significant method changes
are:

clamp: The SystemTracer version did not allow metaclass objects to be clamped;
the new version does. See comments in program code.

writeSpeciall Recall that tracing special objects is a two-step process which
begins in writeSpeciall and is completed in writeSpecial2. I added error
checking code to insure that writeSpecial2 writes the objects in the sane
positions as writeSpeciall. In writeSpeciall. a stream instance variable
called specialObjectPositions is initialized with the file positions where
the special objects are written.

writeSpecial2 As additional data is written to the special objects, the file posi-
tions are compared with the positions recorded in the instance variable
specialObjectPositions. If the positions don't match, an error is raised. An
image will not work if the special objects have been corrupted. Another
change was modifying the code that traced the symbol table. Originally,
when a new image was created, all of the symbols were being retained
whether needed in the new image or not. I corrected the code so that it
would delete unreferenced symbols before writing the symbol table. For
this correction, the writing method for the symbol table (writelndexable-
Pointers:) also had to be changed.

writelndexablePointers: I changed this method so that when the symbol table
object was traced, it would not trace the symbols. The idea is that
a symbol is needed only if it is referenced somewhere besides in the
symbol table. Therefore, the symbols needed cannot be identified until
the entire application has been traced, at which time all of the symbols
that are needed will have been placed in the hash table. Then, as men-
tioned above, writeSpecial2 can delete unreferenced symbols (those not in
hashTable) before writing the symbol table. The code to do this should be
understandable if you keep in mind that the symbol table is implemented
as an array of arrays.

writeMethodDictionary: f found that a significant amount of space in applica-
tion images was taken up by nearly empty method dictionaries. I there-
fore changed this method so that a new method dictionary is created

which is just large enough to hold the methods needed for an applica-
tion. I simplified this method considerably by getting rid of some per-
mutation code which seemed unnecessary. (According to Juanita Ewing
at Tektronix, the permutation code is necessary at times).

16

Listing of Methods and Procedures Clamped

Arc -- clamp class

Array -- clamp methods

(instance) storeOn: at: printOn: literalType asArray
hashMappedBy: hash isLiteral at:put:

(class)

ArrayedCollection -- clamp methods
(instance) add: defaultElement storeElementsFrom:to:on:

size storeOn:
(class) with:with:with:with:with: with:with: new with:with:with:
maxSize with: with:with:with:with: new:withAll:

Figure 5: Sample from clamped file

4.3 Finding Out What an Application Image Contains

In addition to the application image file, three other data files can be created
during the process of tracing an application. The files are named:

1. <image name>.clamped

2. <image name>.traced

3. <image name>.summary

The clamped file is a listing of clamped classes and methods in alphabetical
order by class name. Class methods and instance methods are listed. Figure 5
shows a sample taken from a clamped file.

The traced file contains information printed during the tracing process. Fig-
ure 6 shows a sample taken from a traced file. The numbers in square brackets
are levels of recursion reached during the tracing of objects. During tracing,
the level number is incremented each time trace: is invoked and decremented
each time an invocation of trace: completes. For most objects. only the trace
level and class are printed. For instances of class Symbol, a pound sign fol-
lowed by its string representation is printed. For instances of class String, the
string value is printed in single quotes. For instances of class CompiledMethod
or NewCompiledMethod, the class is printed followed by the class and message
selector that identifies the method, if it can be determined.

17

S- AAA a - .IV,

Trace levels get into the 50's during traversal of even a simple image, so it
is very easy to get lost in the traced file. The lines with double stars were an
attempt to help. These lines are printed in various methods before and after
invoking traces. Inspecting objects in the current image while viewing the file
also helps to make the traced file more understandable.

The clamped file and traced file are optional. Before tracing an image,
application tracer asks whether or not these files should be produced.

The summary file is always produced when an application is traced. The
first part of the file summarizes the objects that were actually traced. Figure 7
shows a sample of this part. Each class that is traced is followed by a pair of
numbers. The first is the number of objects of that class that were traced. The
second is the total size in bytes taken up by objects of that class. The second
part of the summary file lists the classes and methods that were preserved.
Figure 8 shows a sample of this part.

5 Image Inspector

Image inspector is used to examine an image that has been saved on disk. The
program is invoked by sending a message of the form

ImageInspectorView openOn: 'image file name'.

This message opens a standard system view that displays a list of the special
objects. Selecting a special object causes the data for that object to be read
from the file and displayed in a text view. In addition, the class object is read
and the object that contains the class name is read. The class name of the
selected object is displayed along with data from the selected object.

The following is a sample text view for #doesNotUnderstand: (one of the
special objects):

fop: 8700026C

Count/age/hdr: 7FO0
object size (dec.): 30

flags: RMT=O CTX=O type=l
hash word: 54
class: 87000810

(Symbol)
other bytes: doesNotUnderstand:
(100 111 101 115 78 111 116 85 110 100 101 114 115 116 97 110 100 58

The object header is displayed in the same format for all objects. The
header fields are displayed as hexadecimal values except for object size. which

*special object 6 class (SmallInteger class) *

[0] Met ac lass

[1] MethodDictionary

[1] Array

[21 'minVal'
[2] 'maxVal'

*special object 6 components *

[0] MethodDictionary

[1]NevCompiledl. thod(Smalllnteger testi:)

[2] LiteralArray

[3] BytecodeArray

[21 Set

[2]Set

(2] Semaphore
[1] NewCompiledMethod(Smalllfteger test3:)

[2] Lit eral Array
[3] Bytecodekrray
[3] \#testi:
[3] \#test2:

[2]Set

[2]Set

(2] Semaphore
(0] Dictionary
[1] Associat ion

[2]\#Digitbuff er

[2] Array

Figure 6: Sample from traced file

19

I

Nbr objects written=1672

File size=50432

Array (472 11736)

Association (139 2780)

BlockContext (6 984)
BytecodeArray (16 478)

Character (256 4096)
CompiledMethod (6 168)

Dictionary (44 1824)

False (1 12)

Float (34 544)

IdentityDictionary (4 616)

LinkedList (9 180)

LiteralArray (16 536)

Metaclass (96 4240)

MethodContext (11 1724)

MethodDictionary (96 2304)

NewCompiledMethod (10 640)

Process (3 84)
ProcessorScheduler (1 20)

Semaphore (11 264)

Set (47 3608)

String (62 1270)

Symbol (329 6395)

SystemDictionary (1 4560)

True (1 12)
UndefinedObject (1 12)

Figure 7: First Part of Summary File

20

&11I low

Preserved Classes and Methods:

Behavior

BlockZero

Instance Selectors: value

Boolean

ByteArray

BytecodeArray

Character

False

Instance Selectors: ifTrue:ifFalse:

Float

IdentityDictionary
Integer

Instance Selectors: + - <

LinkedList

Magnitude

NewCompiledMethod

Semaphore

SequenceableCollection

Set

SmallInteger

Instance Selectors: + test1: test3: test2: - <
SystemDictionary

Instance Selectors: quitPrimitive

True

Instance Selectors: ifTrue:ifFalse:

Number of methods preserved=13

Figure 8: Second Part of Summary File

21

is displayed as decimal. RMT is the remote object flag; a value of 1 indicates
that the object has a remote part. CTX is ie context flag; a value of 1
indicates a context object [CW86]. The display format for non-header data
depends on the type field. For the example above, type = 1 (byte indexable).
The non-header data is therefore displayed as a sequence of bytes. Both the
character representation and numeric value is shown for each byte. For type =
2 (16-bit indexable), the data is displayed as a sequence of 16-bit values. For
other types, the data is displayed as a sequence of 32-bit values.

The following is a sample text view for the class String (one of the special
objects). Since type = 0 (non-indexable), the non-header data represents a
sequence of instance variables. Notice that the third instance variable is a
Smallinteger value rather than an OOP. An OOP must be greater than or
equal to 80000000 hex.

Oop: 8700008C

Count/age/hdr: 7F09
object size (dec.): 48
flags; RMT=O CTX=O type=O
hash word: 1C
class: 8700A304

(String class)
32-bit words (hex):
(87001B34 8700BDB4 1000 8700BDEC 87000000
80000000 87005104 8700BEIC 87000000)

When the text view is active, the middle button menu provides access to
objects referenced by the object displayed. Three main options are provided
for selecting QOPs. The first option creates a menu of all 32-bit fields in the
object displayed. The second option creates a menu showing only the 32-bit
fields that represent valid non-nil OOPs. The third menu option allows you to
enter or paste in an OOP to 6e displayed.

When an OOP is selected using any of these three options, a new standard
system view is opened to display the selected object. The new window allows
the same options to access other objects.

A fourth option is provided for accessing OOPs that are part of dictionary
objects. This option provides the capability to select a dictionary key rather
than selecting an OOP directly. This option is implemented for objects of class
System Dictionary and objects of class Method Dictionary. When a key is selected
from a MethodDictionary, the corresponding value is displayed (which should be
an object of class CompiledMethod or class NewCompiledMethod). When a key

'22

is selected from a SystemDictionary, the corresponding association is displayed
(which should be an object of class Association).

Using the image inspector to examine an image is somewhat difficult since
most of the data in each window comes from a single object. Yet, to understand
a single object, one generally needs to look at multiple objects. For example,
consider an object that has five 32-bit values in addition to the header data.
Suppose you want to to know what the third value represents. It may be a
named instance variable. To find its name, you would first display the class
object. Then you would have to know that the 5th instance variable of the
class object gives an object's instance variables. You would therefore select
the 5th OOP and display this object. This object would be an array which

contains an object-oriented pointer for each instance variable. If you select the
third OOP, you will finally discover the name of the instance variable you were
seeking.

The best way to overcome this difficulty is to inspect objects in the current
image in parallel with the disk image you are examining. In effect, you use the
current image as a 'road map" for examining the disk image.

6 Future Work

There are two Smalltalk constructs that my project did not address: blocks
and the perform message. A block is an object that contains Smalltalk code.
Since they may invoke methods, blocks complicate the process of tracing an
application. Consider the following example:

ml - m2 P

G - B-- m3

In this example, method ml invokes method m2 and references global ob-
ject G. Global G references block B which contains code to invoke method
m3. If the ApplicationTracer was executed with ml as the initial method, only
methods ml and m2 would be preserved. Method m3, however, should also be
preserved. To correctly handle blocks, the application tracer should trace all
objects referenced by a method since these objects may contain blocks.

The perform message complicates tracing because it can be used to invoke
any method in a class. Stipose an expression of the following form is evaluated.

anObject perform: aSymbol with: anArgument

23

The message sent to anObject depends on the value of aSymbol which may not
be known until run time. It is therefore necessary to preserve every method in
anObject's class. Changes are planned for the type system which will allow the
number of methods accessible by a perform to be limited.

The images produced from ApplicationTracer are larger than they need to
be. Several steps could be taken to make images smaller. One would be to
eliminate global variables and class variables that are not referenced. This
could be done along with determining the methods needed. The Application-
Tracer methodsNeededBy:in: method could be changed so that during traversal
of the parse tree, the referenced class variables and global variables are iden-
tified. Then the clamping process could be modified to clamp class variables
and global variables that are not needed.

Another way to decrease the size of the image would be to re-size certain
objects when they are traced. As mentioned earlier, this is already being done
for method dictionaries. A method dictionary is implemented with two parallel
arrays. These arrays are re-sized to be just large enough to hold the methods
preserved. The same could be done with the system dictionary. Currently.
even though many associations may be removed, the system dictionary size
does not change.

7 Conclusion

Developing stand-alone applications using standard Smalltalk is not feasible.
Since the language is untyped, there is no way to determine what methods
are needed until run-time. Taking the conservative approach of preserving all
methods that could possibly be invoked results in an application image which
includes most of the Smalltalk environment. Using typed Smalltalk, how-
ever, developing stand-alone applications becomes feasible. Type information
greatly decreases the number of methods that must be preserved in an appli-
cation image. The ability to create stand-alone applications is a significant
step toward making Smalltalk a more useful language for delivering finished

software products.

24

),I

References

[CW86] Patrick J. Caudill and Allen Wirfs-Brock. A third generation
Smalltalk-80 implementation. In Proceedings of OOPSLA 86,
Object-Oriented Programming Systems, Languages and Applications,
pages 119-130, November 1986. printed as SIGPLAN Notices, 21(11).

"JG87 Ralph E. Johnson and Justin 0. Graver. .4 User's Guide to Typed
Smalltalk. Technical Report, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 1304 West Springfield, Ur- N
bana, Illinois, 1987.

'Loy88' Joseph P. Loyall. High Level Optimization in a Typed Smalltalk Com-
piler. Master's thesis, University of Illinois at Urbana-Champaign,
1988.

!Ung841 David Ungar. Generation scavenging: a non-disruptive high perfor-
mance storage reclamation algorithm. In Proceedings of the AC.11
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 157-167, 1984.

25 '

%D

Y- A.,PLL PL IL P

